

Solving Equations Using Addition or Subtraction

Goal: Use addition and subtraction to solve equations.

Vocabulary

Equation:

A mathematical sentence formed by placing an equalsign between two expressions

Solution of an equation:

A number you can substitute for the variable to make an equation with one variable true

Equivalent equations: | Equations that have the same solution(s)

Inverse operation: An operation that "undoes" another operation

EXAMPLE Checking Solutions

Tell whether the value of the variable is a solution of 25 - g = 17.

a.
$$g = 12$$

b.
$$g = 8$$

Solution

$$25 - g = 17$$
 $5 - 12 \stackrel{?}{=} 17$

Write original equation.

Simplify.

Answer: 12 is not a solution.

b.
$$25 - g = 17$$

Write original equation. Substitute 8 for g.

Answer: 8 is a solution.

Subtraction Property of Equality

Words Subtracting the same number from each side of an equation produces an equivalent equation.

Numbers If x + 9 = 12, then x + 9 - 9 = 12 - 9, or x = 3.

Algebra If x + a = b, then x + a - a = |b| - a, or x = |b - a|

EXAMPLE 2 Solving an Equation Using Subtraction

x + 7 = -13

Original equation

Subtract -7 from each side. (Subtraction property of equality)

Simplify.

Answer: The solution is |-20|.

√ Check x + 7 = -13

Write original equation.

Substitute -20 for x.

-13 = -13

Solution checks.

Addition Property of Equality

Words Adding the same number to each side of an equation produces an equivalent equation.

Numbers If x - 6 = 1, then x - 6 + 6 = 1 + 6, or x = 7.

Algebra If x - a = b, then x - a + a = b + a, or x = b + a

115

EXAMPLE 3 Solving an Equation Using Addition

$$t - 5.8 = 16$$

 $t - 5.8 + 5.8 = 16 + 5.8$

Original equation

Add 5.8 to each side.

(Addition property of equality)

$$t = \boxed{21.8}$$

Simplify.

✓ Check
$$21.8$$
 5.8 $\stackrel{?}{=}$ 16 Substitute 21.8 for t in original equation.
 $16 = 16$ ✓

Guided Practice Solve the equation. Check your solution.

1.
$$y + 4 = 13$$
 2. $-17 = 7 + t$ **3.** $n - 11 = 14$ **4.** $-2 = s - 3.5$

EXAMPLE 4 Using a Model

Kites You are flying a kite. The total length of the kite's string is 275 feet. So far you have let out 153 feet of string. How much string do you have left?

Solution

Let s represent the length of string left.

$$\begin{bmatrix}
 275 \\
 \hline
 275
 \end{bmatrix} = \begin{bmatrix}
 s
 \end{bmatrix} + 153$$

$$\begin{bmatrix}
 153 \\
 \hline
 \end{bmatrix} = \begin{bmatrix}
 s
 \end{bmatrix} + 153 - \begin{bmatrix}
 153
 \end{bmatrix}$$

$$\begin{bmatrix}
 122
 \end{bmatrix} = \begin{bmatrix}
 s
 \end{bmatrix}$$

Write an algebraic model.

Subtract 153 from each side.

Simplify.